【关于众数中位数平均数的小学题】在小学数学中,众数、中位数和平均数是统计学中最基础的三个概念,它们可以帮助我们更好地理解一组数据的集中趋势。以下是一道典型的小学数学题,结合这三个概念进行分析,并给出详细解答。
题目:
小明记录了他一周内每天的零花钱(单位:元)如下:
| 星期 | 零花钱 |
| 一 | 5 |
| 二 | 8 |
| 三 | 6 |
| 四 | 5 |
| 五 | 7 |
| 六 | 8 |
| 日 | 9 |
请计算这组数据的众数、中位数和平均数,并填写表格。
解题步骤:
1. 排序数据
将原始数据从小到大排列:
5, 5, 6, 7, 8, 8, 9
2. 计算众数
众数是指一组数据中出现次数最多的数值。
在本组数据中,5 和 8 各出现了两次,其他数字只出现一次。
所以,众数为 5 和 8(双众数)。
3. 计算中位数
中位数是将数据按大小顺序排列后,位于中间位置的数。
数据个数为 7,奇数个,所以中位数是第 4 个数:
排序后的数据:5, 5, 6, 7, 8, 8, 9
所以,中位数为 7。
4. 计算平均数
平均数是所有数据之和除以数据个数。
计算总和:5 + 5 + 6 + 7 + 8 + 8 + 9 = 48
数据个数:7
所以,平均数 = 48 ÷ 7 ≈ 6.86(保留两位小数)
答案总结表:
| 概念 | 数值 | 说明 |
| 众数 | 5 和 8 | 出现次数最多的数值 |
| 中位数 | 7 | 排序后位于中间的数 |
| 平均数 | 6.86 | 所有数据之和除以数据个数 |
通过这道题,我们可以看到,众数、中位数和平均数各有不同的作用,分别反映了数据的不同特征。在实际生活中,了解这些统计量有助于我们更全面地分析数据。


